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More than thirty studies have been devoted to the stability of plane Couette flow. The f i r s t  was an 
ar t ic le  by Kelvin [1],and the problem is still a t t ract ing the attention of invest igators  [2]. It was quite 
co r r ec t ly  noted in [3] that although the invest igators  are  convinced of the stability of Couette flow to small 
dis turbances,  the numerical  and asymptot ic  calculation regions do not overlap and therefore  statements 
concerning stability have been of a specific nature.  

Numerical  analysis  on an electronic  computer  has been ca r r i ed  out for selected values of the wave-  
numebr a and the Reynolds number R, with the values falling in the region ~R ~ 104 [4-6]. 

The objective of the present  ar t ic le  is to: 1) extend the numerical  calculation region to aR ~ 10~; 2) 
study the dependence of the eigenvalue on a over  the entire range 0 -< a < ~o; 3) on the basis of the numerical  
analysis, predic t  the behavior of the eigenvalues for  a rb i t r a ry  a and R; 4) join the region of numerical  
calculations with the region of applicability of the asymptot ic  methods. 

The problem reduces  [3] to finding the eigenvalues of the equation 

~v  _ 2a~" + ~'~ = i~R (v -- C) (~ -- a~) (--t ~< ~ ~< t) (1) 

with the boundary conditions 

(q-i) = ~' (4-i)= 0 (2) 

Here C = X + iY is the unknown eigenvalue, the case Y < O corresponds  to decaying dis turbances .  

All the pa r ame te r s  in (1) are  dimensionless  and are  based on the channel halfwidth, wall velocity,  
and molecular  v iscosi ty .  

The eigenvalues are  found by the step -by-s t ep  integration method [7], modified for the case of 
a s y m m e t r i c  prof i les .  

A logar i thmic sca le ,where  L = log (1 -  I X I), is used for c lar i ty  in i l lustrat ing the asymptot ic  
relat ions in the f igures .  

F igure  1 shows the f i r s t  six eigenvalues as a function of R for ~ = 1. These calculations were made 
p r imar i ly  as a check and for compar ison with the resul ts  of ether  authors .  For  small  R the eigenvalues 
a re  purely imaginary  in accordance  with the general relat ions noted in [8]. With increase  of R theeigen-  
values merge  by pairs  and af ter  pass ing through the multiple point form the pairs  C = • X + i Y. The f i r s t  
two pai rs  of eigenvalues coincide to within the plotting e r r o r  with the resul ts  of [4, 5] over the entire region 
investigated by these authors (R ~ 103). For  the third pair  of eigenvalues with R > 100 the resul ts  of the 
presen t  author differ f rom those of Birikh even with account for the cor rec t ions  [5]. 

This is apparently explained by the fact  that the e r r o r s  of the variational method increase  significantly 
with increase  of the eigenvalue number and with increase  of R, while the present  calculations were made 
with a fixed accu racy  which is independent of these fac tors .  We note also that the resul ts  obtained by 
numerical  analysis  differ considerably f rom the calculations of [9], in which the asymptot ic  method was 
used. 

The detailed asymptot ic  analysis  made in [10] showed that the following es t imate  is valid for large  ~R 

c = -Fi + (~/~)-'z~ + 0 [(a/~)-'Z~] (3) 
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Fig. 1 

and in this case X = 0. 

We see c lear ly  f rom Fig. 1 that for R > 1~ 3 the eigenvalues approach 
the asymptotic  relat ions and do so in complete agreement  with (3). For  
example, the f i rs t  pair  of eigenvalues is described well by the relat ion 

C----- ~t  + (aR) -u~ (• -- it.l) (4) 

The numerical  calculations were made up to R = 34,000 and were 
terminated because of the obvious asymptot ic  behavior of C. It is known 
[3] that the instability region may encompass a comparat ively  narrow 

5 range of variat ion of d and therefore  for  a complete stability analysis  
we must  investigate the entire wavenumber range 0 -- d < ~ .  

In Fig.  2 the continuous curves are  the resul ts  of numerical  ca l -  
culations of the relation Y(d) for R = 5, 102, 103, 104 for the f i rs t  eigen- 
value (curves 1, 2, 3, 4, respect ively) .  For  small  d, just as for  small  
R,the relat ion holds [8] 

y - - -  - - ~  / aR (5) 

It is not difficult to see that for sufficiently large  a the  following relation holds: 

y = - - a  / R (6) 

Relations (5) and (6) a re  represented  bythe s t ra ight  lines 7 and 8 respec t ive ly in  Fig. 2. 

In the general  case the relat ion Y(d) has two local maxima.  The f i r s t  is reached in the zone of mono-  
tonic dis turbances (X = 0). The position of this maximum as a function of R was calculated in the range 
0 -< R - 105 [the relat ions X(R) and Y(R) along the local maxima are  shown in Fig.  2 by the dashed lines 
5 and 6 in the region of large  and small d respect ively] .  The following relat ion is satisfied over the entire 
range of R examined: 

YI (R) ~--- nlax~ Y .~. 4g / a~naxR (7) 

where alma x v a r i e s f r o m  2.81 for  the s tat ionary fluidto zero  as R ~ :o and the quantity ~R approaches the 
l imiting value dR = 55.2 with increase  of R. Thus, in the region of monotonic dis t rubances Y <-0 .226  and 
this is in agreement  with the r igorous  stabili ty proof obtained in [11]. 

Then the breakpoint  in the relat ion Y(~) corresponds  to merging of the f i r s t  two eigenvalues and 
generation of a pair  of complex conjugate decrements .  The second eigenvalue is not shown in Fig.  2, 
since it does not affect the stability analysis .  

The second local maximum ar i ses  at the breakpoint for R = 8 and shifts in the direct ion of l a rge r  
with increase  of R. The re la t ion II (R) was calculated up to dR = 3- 107 and for aR > 100 the following re -  
lation holds approximately:  

c = +_i + (aa)-i/" (+3  - ~ v ,  / 3) (8) 

After  reaching the second local maximum (or af ter  passing the breakpoint  for  R < 8) the relation 
Y(a) rapidly approaches the asymptote (6) with the difference between the disturbance phase velocity X 
and the wall velocity approaching zero  like 

I - - I X  I =  {S/a2 -[gRa-%} (9) 

We see f rom Fig. 2 that for  R > 103 the eigenvalue for  d < 1 depends only on the complex ~R. Using 
the numerical  resul ts  obtained, we can predict  the relat ion C (d) for any la rge  values of R. For  dR < 104 
this relat ion agrees  with the relat ion for R = 104,then up to d ~ 1, it has the form (in Fig. 2 this relat ion 
cor responds  to the s t ra ight  line 9) 

C ~- ::]:t -~ (aR) -'[~ ( + 4 . !  - -  ft .1) ; (10)  

for  d =0o632J-RY(d) reaches  a maximum and the value of C(d) is calculated using (8), then Y approaches 
the asymptote Y = - - d / R  and X obeys (9). 

Fo r  the stability analysis it suffices to be cer ta in  that II(R) < 0 for any R. As for the maximum 
located in the region of monotonicity of the dis turbances,  wRh increase  of R, II(R) approaches the l imiting 
values II = - 0.225,as we see f rom Fig.  3 (curve 2). For  the maximum in the region of osci l la tory  
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Re ichard t  [12] indicates  the 
to the turbulent  r e g i m e .  Kohlman 
careful  expe r imen t s  made it poss ib le  to prolong the l a m i n a r  r eg ime  to higher  Reynolds numbers ,  as is 
obse rved  for  the case  of the c i r c u l a r  pipe.  This  is pointed up by the asympto t i c  and numer ica l  r e su l t s  
indicating Couette flow stabi l i ty  to r  any Reynolds number  to sufficiently smal l  d i s t rubances .  

The author wishes  to thank V. A. Sapozhnikov for  a s s i s t ance  in detai l ing the computational  technique 
and M. A. Gol 'dsht ik  and S. S. Kutateladze for  the i r  continued in te res t .  

d i s tu rbances  (curve 2 in Fig.  3) the re la t ion  (8) p red ic t s  negat ivi ty fo r  
all R. We note that Wasow [10] proved  stabil i ty for  l a rge  R in the case 
of re la t ion  (3). The numer ica l  calculat ions were  made up to values  of 
aR for  which in (3) we can neglect  the l a s t  t e r m ,  i .e . ,  the regions  of 
a sympto t i c  and numer i ca l  analys is  over lap .  Thus,  although there  is no 
r igorous  proof ,  once again the s tabi l i ty  of Couette flow to smal l  d i s t u r -  
bances  is shown over  p rac t ica l ly  the en t i re  range  of va r i a t ion  of ~ andR. 

In conclusion,  I would l ike to d iscuss  the exper imenta l  r e su l t s  on 
turbul izat ion of Couette flow. Very  few exper imenta l  studies have been 
made of the s tabi l i ty  of plane Coutette flow. This  is explained by the fact  
that  i t  is cons iderably  m o r e  difficult to organize  the pure  expe r imen t  
than, for  example ,  for  flow between coaxial ro ta t ing  cy l inders .  

range 600 < R < 1450 in which he obse rved  t rans i t ion  f rom the l a m i n a r  
[13] c i tes  a b r o a d e r  range: 103 < R < 104. It appea r s  that  the m o r e  
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