STABILITY OF PLANE COUETTE FLOW

V. N, Shtern

More than thirty studies have been devoted to the stability of plane Couette flow. The first was an
article by Kelvin [1],and the problem is still attracting the attention of investigators [2]. It was quite
correctly noted in [3] that although the investigators are convinced of the stabilify of Couette flow to small
disturbances, the numerical and asymptotic calculation regions do not overlap and therefore statements
concerning stability have been of a specific nature.

Numerical analysis on an electronic computer has been carried out for selected values of the wave-
numebr o and the Reynolds number R, with the values falling in the region oR £ 10* [4-6].

The objective of the present article is to: 1) extend the numerical calculation regionto aR ~ 107; 2)
study the dependence of the eigenvalue on « over the entire range 0 =a < «; 3) on the basis of the numerical
analysis, predict the behavior of the eigenvalues for arbitrary « and R; 4) join the region of numerical
calculations with the region of applicability of the asymptotic methods,

The problem reduces [3] to finding the eigenvalues of the equation

o'V — 2a%¢” 4 atg= iaR (y — C) (9" == a%P) (—1 <y <) (1)

with the boundary conditions
P(EH =9 (X)=10 (2)
Here C =X +iY is the unknown eigenvalue, the case Y < O corresponds to decaying disturbances.

All the parameters in (1) are dimensionless and are based on the channel halfwidth, wall velocity,
and molecular viscosity.

The eigenvalues are found by the step -by-step integration method [7], modified for the case of
asymmetric profiles,

Alogarithmic scale, where L = log (1~ | X ), is used for clarity in illustrating the asymptotic
relations in the figures,

Figure 1 shows the first six eigenvalues as a function of R for o = 1, These calculations were made
primarily as a check and for comparison with the results of other authors. For small R the eigenvalues
are purely imaginary in accordance with the general relations noted in [8]. With increase of R theeigen-
values merge by pairs and after passing through the multiple point form the pairs C =+ X +17Y, The first
two pairs of eigenvalues coincide to withinthe plotting error with the results of {4, 5] over the entire region
investigated by these authors R % 103). For the third pair of eigenvalues with R > 100 the results of the
present author differ from those of Birikh even with account for the corrections {5].

This is apparently explained by the fact that the errors of the variational method increase significantly
with increase of the eigenvalue number and with increase of R, while the present calculations were made
with a fixed accuracy which is independent of these factors. We note also that the results obtained by
numerical analysis differ considerably from the calculations of [9], in which the asymptotic method was
used.

The detailed asymptotic analysis made in[10] showed that the following estimate is valid for large oR

C= 1 4 (@B)n 4 0 [(@R) ] ©)
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We see clearly from Fig, 1 that for R > 10? the eigenvalues approach
- the asymptotic relations and do so in complete agreement with (3), For
example, the first pair of eigenvalues is described well by the relation
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10 ﬁ £ | The numerical calculations were made up to R = 34,000 and were
o terminated because of the obvious asymptotic behavior of C. It is known
L N .
R\ﬁ L2 {3] that the instability region may encompass a comparatively narrow
"1 0 P T T range of variation of o and therefore for a complete stability analysis
Fig. 1 we must investigate the entire wavenumber range 0 = o <=,

In Fig. 2the continuous curves are the results of numerical cal-
culations of the relation Y (o) for R = 5, 102, 103, 10* for the first eigen~
value (curves 1, 2, 3, 4, respectively). For small o, just as for small
R,the relation holds [8] :

Y= —n?/aR (5)
and in this case X = 0, It is not difficult to see that for sufficiently large o the following relation holds:
Y= —o /R (6)
Relations (5) and (6) are represented by the straight lines 7 and 8 respectivelyin Fig. 2,
In the general case the relation Y (o) has two local maxima. The first is reached in the zone of mono-
tonic disturbances (X = 0). The position of this maximum as a function of R was calculated in the range
0 =R = 10° [the relations X(R) and Y R) along the local maxima are shown in Fig, 2 by the dashed lines

5 and 6 in the region of large and small @ respectively]. The following relation is satisfied over the entire
range of R examined:

I (R) =max, Y ~4n [a,, R (7

where amax variesfrom 2,81 for the stationary fluidto zero as R — « and the quantity oR approaches the
limiting value aR = 55,2 with increase of R, Thus, in the region of monotonic distrubances Y < —0.226 and
this is in agreement with the rigorous stability proof obtained in [11},

Then the breakpoint in the relation Y (@) corresponds to merging of the first two eigenvalues and
generation of a pair of complex conjugate decrements. The second eigenvalue is not shown in Fig, 2,
since it does not affect the stability analysis.

The second local maximum arises at the breakpoint for R = 8 and shifts in the direction of larger o

with increase of R. The relation 11 (R) was calculated up to oR = 3- 107 and for oR > 100 the following re-
lation holds approximately:

C= 41+ (aR) ™ (13 — in'/ 3) (8)

After reaching the second local maximum (or after passing the breakpoint for R < 8) the relation
Y(w) rapidly approaches the asymptote (6) with the difference between the disturbance phase velocity X
and the wall velocity approaching zero like

1 | X =¥ 2—183(1*‘/9} (9)

We see from Fig. 2 that for R > 10% the eigenvalue for o< 1 depends only on the complex oR, Using
the numerical results obtained, we can predict the relation C(a) for any large values of R. For oR < 10
this relation agrees with the relation for R = 104,then up to @ ~1, it has the form (in Fig, 2 this relation
corresponds to the straight line 9)

€= 41 + (aR)™ (444 — 11.1) : (10)
for o =0.632 ,\/f Y (o) reaches a maximum and the value of C(c) is calculated using (8), then Y approaches
the asymptote Y =~a /R and X obeys (9).

For the stability analysis it suffices to be certain that II(R) < 0 for any R. As for the maximum
located in the region of monotonicity of the disturbances, with increase of R, I(R) approaches the limiting
values 11 = — 0.225,as we see from Fig, 3 (curve 2), For the maximum in the region of oscillatory
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disturbances (curve 2 in Fig, 3) the relation (8) predicts negativity for

o

] all R. We note that Wasow [10] proved stability for large R in the case
/r of relation (3), The numerical calculations were made up to values of
oR for which in (3) we can neglect the last term, i.e., the regions of

- asymptotic and numerical analysis overlap. Thus, although there is no
/ rigorous proof, once again the stability of Couette flow to small distur-

bances is shown over practically the entire range of variation of ¢ andR.

-1
/ | | In conclusion, T would like to discuss the experimental results on

)

=10
1

4 turbulization of Couette flow. Very few experimental studies have been
made of the stability of plane Coutette flow. This is explained by the fact
that it is considerably more difficult to organize the pure experiment
than, for example, for flow between coaxial rotating cylinders.

[
19 10% 10
Fig. 3

Reichardt [12] indicates the range 600 < R < 1450 in which he observed transition from the laminar

to the turbulent regime., Kohlman ([13] cites a broader range: 10° <R < 10%, It appears that the more
careful experiments made it possible to prolong the laminar regime to higher Reynolds numbers, as is
observed for the case of the circular pipe. This is pointed up by the asymptotic and numerical results
indicating Couette flow stability tor any Reynolds number to sufficiently small distrubances,
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